4-1.Complex numbers
hard

For $a \in C$, let $A =\{z \in C: \operatorname{Re}( a +\overline{ z }) > \operatorname{Im}(\bar{a}+z)\}$ and $B=\{z \in C: \operatorname{Re}(a+\bar{z}) < \operatorname{Im}(\bar{a}+z)\}$. Then among the two statements :

$(S 1)$ : If $\operatorname{Re}(A), \operatorname{Im}(A) > 0$, then the set $A$ contains all the real numbers

$(S2)$: If $\operatorname{Re}(A), \operatorname{Im}(A) < 0$, then the set $B$ contains all the real numbers,

A

Only $(S1)$ is true

B

both are false

C

Only $(S2)$ is true

D

Both are true

(JEE MAIN-2023)

Solution

Let $a=x_1+i y_1 z=x+i y$

Now $\operatorname{Re}(a+\bar{z}) > \operatorname{Im}(\bar{a}+z)$

$\therefore x _1+ x >- y _1+ y$

$x _1=2, y _1=10, x =-12, y =0$

Given inequality is not valid for these values.

$S 1$ is false.

Now $\operatorname{Re}(a+\bar{z})<\operatorname{Im}(\bar{a}+z)$

$x _1+ x < – y _1+ y$

$x _1=-2, y _1=-10, x =12, y =0$

Given inequality is not valid for these values.

$S2$ is false.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.