For $a \in C$, let $A =\{z \in C: \operatorname{Re}( a +\overline{ z }) > \operatorname{Im}(\bar{a}+z)\}$ and $B=\{z \in C: \operatorname{Re}(a+\bar{z}) < \operatorname{Im}(\bar{a}+z)\}$. Then among the two statements :
$(S 1)$ : If $\operatorname{Re}(A), \operatorname{Im}(A) > 0$, then the set $A$ contains all the real numbers
$(S2)$: If $\operatorname{Re}(A), \operatorname{Im}(A) < 0$, then the set $B$ contains all the real numbers,
Only $(S1)$ is true
both are false
Only $(S2)$ is true
Both are true
The amplitude of the complex number $z = \sin \alpha + i(1 - \cos \alpha )$ is
Let $z$ be a complex number, then the equation ${z^4} + z + 2 = 0$ cannot have a root, such that
If $|z_1| = 2 , |z_2| =3 , |z_3| = 4$ and $|2z_1 +3z_2 +4z_3| =9$ ,then value of $|8z_2z_3 +27z_3z_1 +64z_1z_2|$ is equal to:-
If $\frac{3+i \sin \theta}{4-i \cos \theta}, \theta \in[0,2 \pi],$ is a real number, then an argument of $\sin \theta+\mathrm{i} \cos \theta$ is
If $Arg(z)$ denotes principal argument of a complex number $z$, then the value of expression $Arg\left( { - i{e^{i\frac{\pi }{9}}}.{z^2}} \right) + 2Arg\left( {2i{e^{-i\frac{\pi }{{18}}}}.\overline z } \right)$ is