- Home
- Standard 11
- Mathematics
14.Probability
hard
Let $A=\left[a_{i j}\right]$ be a square matrix of order $2$ with entries either $0$ or $1$ . Let $E$ be the event that $A$ is an invertible matrix. Then the probability $P ( E )$ is:
A$\frac{5}{8}$
B$\frac{3}{16}$
C$\frac{1}{8}$
D$\frac{3}{8}$
(JEE MAIN-2025)
Solution
C$-I$ $\left|\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right| \rightarrow 4$ ways
C$-II$ $\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right| \&\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right| \rightarrow 2$ ways
$P =\frac{\text { favourable }}{\text { total }}=\frac{6}{16}=\frac{3}{8}$
C$-II$ $\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right| \&\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right| \rightarrow 2$ ways
$P =\frac{\text { favourable }}{\text { total }}=\frac{6}{16}=\frac{3}{8}$
Standard 11
Mathematics
Similar Questions
normal