13.Statistics
hard

અહી $x _1, x _2, \ldots \ldots x _{10}$ દસ અવલોકન આપેલ છે કે જેથી $\sum_{i=1}^{10}\left(x_i-2\right)=30, \sum_{i=1}^{10}\left(x_i-\beta\right)^2=98, \beta>2$ અને તેઓના વિચરણ $\frac{4}{5}$ થાય. જો $\mu$ અને $\sigma^2$ એ અનુક્રમે  $2\left( x _1-1\right)+4 \beta, 2\left( x _2-1\right)+$ $4 \beta, \ldots . ., 2\left(x_{10}-1\right)+4 \beta$ ના મધ્યક અને વિચરણ હોય તો $\frac{\beta \mu}{\sigma^2}$ ની કિમંત મેળવો.

A$100$
B$110$
C$120$
D$90$
(JEE MAIN-2025)

Solution

$\frac{4}{5}=\frac{\Sigma x_{i}^2}{10}-\left(\frac{\Sigma x_{i}}{10}\right)^2$
$\frac{4}{5}=\frac{\Sigma x_{i}^2}{10}-25$
$\Rightarrow \Sigma x_{i}^2=258$
$\text { Now } \sum_{i=1}^{10}\left(x_{i}-\beta\right)^2=98$
$\sum_{i=1}^{10}\left(x_{i}^2-2 \beta \cdot x_{i}+\beta^2\right)=98$
$258-2 \beta(50)+10 \beta^2=98$
$(\beta-8)(\beta-2)=0$
$\beta=\text { or } \beta=2 \quad(\text { as } \beta>2)$
$\therefore \beta=8$
Now,
$=2\left(x_1-1\right)+4 \beta, 2\left(x_2-1\right)+4 \beta, \ldots .2\left(x_{10}-1\right)+4 \beta$
$=2 x_1+30,2 x_2+30, \ldots . .2 x_{10}+30$
$\mu=2(5)+30=40$
$\sigma^2=2^2\left(\frac{4}{5}\right)=\frac{16}{5}$
$\because \frac{B \mu}{2}=\frac{8 \times 40}{}=100$
Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.