Let $S = N \cup\{0\}$. Define a relation $R$ from S to $R$ by: $R =\left\{(x, y): \log _e y=x \log _e\left(\frac{2}{5}\right), x \in S, y \in R \right\}$ Then, the sum of all the elements in the range of $R$ is equal to

  • [JEE MAIN 2025]
  • A
    $\frac{5}{2}$
  • B
    $\frac{10}{9}$
  • C
    $\frac{3}{2}$
  • D
    $\frac{5}{3}$

Similar Questions

Let ${A_n} = \left( {\frac{3}{4}} \right) - {\left( {\frac{3}{4}} \right)^2} + {\left( {\frac{3}{4}} \right)^3} - ..... + {\left( { - 1} \right)^{n - 1}}{\left( {\frac{3}{4}} \right)^n}$ and $B_n \,= 1 - A_n$ . Then, the least odd natural number $p$ , so that ${B_n} > {A_n}$, for all $n \geq p$ is

  • [JEE MAIN 2018]

Let $\left\langle a_n\right\rangle$ be a sequence such that $a_0=0, a_1=\frac{1}{2}$ and $2 a_{n+2}=5 a_{n+1}-3 a_n, n=0,1,2,3, \ldots \ldots$. Then $\sum_{k=1}^{100} a_k$ is equal to :

  • [JEE MAIN 2025]

Let $x _{1}, x _{2}, x _{3}, \ldots ., x _{20}$ be in geometric progression with $x_{1}=3$ and the common ration $\frac{1}{2}$. A new data is constructed replacing each $x_{i}$ by $\left(x_{i}-i\right)^{2}$. If $\bar{x}$ is the mean of new data, then the greatest integer less than or equal to $\bar{x}$ is $.....$

  • [JEE MAIN 2022]

If $a,b,c$ are in $A.P.$, then ${2^{ax + 1}},{2^{bx + 1}},\,{2^{cx + 1}},x \ne 0$ are in

Let $C_0$ be a circle of radius $I$ . For $n \geq 1$, let $C_n$ be a circle whose area equals the area of a square inscribed in $C_{n-1} .$ Then, $\sum \limits_{i=0}^{\infty}$ Area $\left(C_i\right)$ equals

  • [KVPY 2014]