3 and 4 .Determinants and Matrices
easy

Let $A = \left( {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right)$, the only correct statement about the matrix $A$ is

A

${A^2} = I$

B

$A = ( - 1)\,I,$ where I is a unit matrix

C

${A^{ - 1}}$ does not exist

D

$A$ is a zero matrix

(AIEEE-2004)

Solution

(a) Let $A = \left( {\begin{array}{*{20}{c}}0&0&{ – 1}\\0&{ – 1}&0\\{ – 1}&0&0\end{array}} \right)$

Check by options.

$(i)$ ${A^2} = \left( {\begin{array}{*{20}{c}}0&0&{ – 1}\\0&{ – 1}&0\\{ – 1}&0&0\end{array}} \right)\,\,\left( {\begin{array}{*{20}{c}}0&0&{ – 1}\\0&{ – 1}&0\\{ – 1}&0&0\end{array}} \right)$

${A^2} = \left( {\begin{array}{*{20}{c}}1&0&0\\0&1&0\\0&0&1\end{array}} \right) = I$

$(ii)$ $( – 1)\,I = \left( {\begin{array}{*{20}{c}}{ – 1}&0&0\\0&{ – 1}&0\\0&0&{ – 1}\end{array}} \right) \ne A$.

$(iii)$ $|A| = 1 \ne 0 \Rightarrow {A^{ – 1}}$ exists.

$(iv)$ Clearly $A$, is not a zero matrix.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.