Let $r$ be the range and ${S^2} = \frac{1}{{n - 1}}\sum\limits_{i = 1}^n {{{({x_i} - \bar x)}^2}} $ be the $S.D.$ of a set of observations ${x_1},\,{x_2},\,.....{x_n}$, then
$S \le r\sqrt {\frac{n}{{n - 1}}} $
$S = r\sqrt {\frac{n}{{n - 1}}} $
$S \ge r\sqrt {\frac{n}{{n - 1}}} $
None of these
Find the mean and variance for the following frequency distribution.
Classes | $0-30$ | $30-60$ | $60-90$ | $90-120$ | $120-150$ | $50-180$ | $180-210$ |
$f_i$ | $2$ | $3$ | $5$ | $10$ | $3$ | $5$ | $2$ |
The mean and standard deviation of six observations are $8$ and $4,$ respectively. If each observation is multiplied by $3,$ find the new mean and new standard deviation of the resulting observations.
If $\sum\limits_{i = 1}^{18} {({x_i} - 8) = 9} $ and $\sum\limits_{i = 1}^{18} {({x_i} - 8)^2 = 45} $ then the standard deviation of $x_1, x_2, ...... x_{18}$ is :-
The mean and standard deviation of $40$ observations are $30$ and $5$ respectively. It was noticed that two of these observations $12$ and $10$ were wrongly recorded. If $\sigma$ is the standard deviation of the data after omitting the two wrong observations from the data, then $38 \sigma^{2}$ is equal to$.........$
The mean and standard deviation of $20$ observations were calculated as $10$ and $2.5$ respectively. It was found that by mistake one data value was taken as $25$ instead of $35 .$ If $\alpha$ and $\sqrt{\beta}$ are the mean and standard deviation respectively for correct data, then $(\alpha, \beta)$ is :