किसी समूह के प्रेक्षणों ${x_1},\,{x_2},\,.....{x_n}$ के लिये परिसर $r$ तथा मानक विचलन ${S^2} = \frac{1}{{n - 1}}\sum\limits_{i = 1}^n {{{({x_i} - \bar x)}^2}} $ हैं, तब
$S \le r\sqrt {\frac{n}{{n - 1}}} $
$S = r\sqrt {\frac{n}{{n - 1}}} $
$S \ge r\sqrt {\frac{n}{{n - 1}}} $
ईनमे से कोई नहीं
मान लें कि $n \geq 3$ है। $n$ संख्याओं की एक सूची $0 < x_1 < x_2 < \cdots < x_n$ का औसत $\mu$ तथा नियत विचलन $(standard\,deviation)$ $\sigma$ है। एक नई सूची $y_1=0$, $y_2=x_2, \ldots, y_{n-1}=x_{n-1}, y_n=x_1+x_n$ बनाई जाती है जिसका औसत $\hat{\mu}$ तथा नियत विचलन $\hat{\sigma}$ है। तब निम्नलिखित में से कौन सा कथन सत्य है?
पाँच प्रेक्षणों का माध्य तथा मानक विचलन क्रमशः $9$ तथा $0$ हैं। यदि उनमें से एक प्रेक्षण इस प्रकार बदला जाए कि नया माध्य $10$ हो जाए, तो उनका मानक विचलन है
माना $2 n$ प्रेक्षणों की एक शंखला में, आधे $a$ के बराबर है तथा शेष आधे $- a$ के बराबर है। प्रत्येक प्रेक्षण में एक अचर $b$ जोड़ने पर नये समूह का माध्य तथा मानक विचलन क्रमशः $5$ तथा $20$ हैं। तो $a ^{2}+ b ^{2}$ का मान बराबर है
माना आंकडो
$X$ | $1$ | $3$ | $5$ | $7$ | $9$ |
$(f)$ | $4$ | $24$ | $28$ | $\alpha$ | $8$ |
का माध्य 5 है। यदि इन आंकडों के माध्य के सापेक्ष माध्य विचलन तथा प्रसरण क्रमशः $m$ तथा $\sigma^2$ हैं, तो $\frac{3 \alpha}{m+\sigma^2}$ बराबर है________
यदि संख्याओं $2,3, a$ तथा $11$ का मानक विचलन $3.5$ है, तो निम्न में से कौन-सा सत्य है?