- Home
- Standard 11
- Mathematics
किसी समूह के प्रेक्षणों ${x_1},\,{x_2},\,.....{x_n}$ के लिये परिसर $r$ तथा मानक विचलन ${S^2} = \frac{1}{{n - 1}}\sum\limits_{i = 1}^n {{{({x_i} - \bar x)}^2}} $ हैं, तब
$S \le r\sqrt {\frac{n}{{n - 1}}} $
$S = r\sqrt {\frac{n}{{n - 1}}} $
$S \ge r\sqrt {\frac{n}{{n - 1}}} $
ईनमे से कोई नहीं
Solution
(a) $\mathop {r = \max |{x_i} – {x_j}|}\limits_{\,\,\,\,\,\,\,\,\,\,\,\,\,i\, \ne j} $
${S^2} = \frac{1}{{n – 1}}\sum\limits_{i = 1}^n {{{({x_i} – \bar x)}^2}} $
${({x_i} – \bar x)^2} = {\left( {{x_i} – \frac{{{x_1} + {x_2} + ….. + {x_n}}}{n}} \right)^2}$
$ = \frac{1}{{{n^2}}}[({x_i} – {x_1}) + ({x_i} – {x_2}) + …. + ({x_i} – {x_i} – 1)$
$ + ({x_i} – {x_i} + 1) + …….$$ + ({x_i} – {x_n})] \le \frac{1}{{{n^2}}}{[(n – 1)r]^2}$,
==> ${({x_i} – \bar x)^2} \le {r^2} \Rightarrow \sum\limits_{i = 1}^n {{{({x_i} – \bar x)}^2} \le n{r^2}} $
==> $\frac{1}{{n – 1}}\sum\limits_{i = 1}^n {{{({x_i} – \bar x)}^2} \le \frac{{n{r^2}}}{{(n – 1)}}} $==> ${S^2} \le \frac{{n{r^2}}}{{(n – 1)}}$
==> $S \le r\sqrt {\frac{n}{{n – 1}}} $.
Similar Questions
निम्नलिखित बारंबारता बंटन के लिए माध्य व प्रसरण ज्ञात कीजिए।
वर्ग | $0-30$ | $30-60$ | $60-90$ | $90-120$ | $120-150$ | $50-180$ | $180-210$ |
बारंबारता | $2$ | $3$ | $5$ | $10$ | $3$ | $5$ | $2$ |