The mean and variance of seven observations are $8$ and $16$, respectively. If $5$ of the observations are $2, 4, 10, 12, 14,$ then the product of the remaining two observations is
$40$
$45$
$49$
$48$
The mean of $5$ observations is $4.4$ and their variance is $8.24$. If three observations are $1, 2$ and $6$, the other two observations are
If the variance of the frequency distribution is $160$ , then the value of $\mathrm{c} \in \mathrm{N}$ is
$X$ | $c$ | $2c$ | $3c$ | $4c$ | $5c$ | $6c$ |
$f$ | $2$ | $1$ | $1$ | $1$ | $1$ | $1$ |
The outcome of each of $30$ items was observed; $10$ items gave an outcome $\frac{1}{2} - d$ each, $10$ items gave outcome $\frac {1}{2}$ each and the remaining $10$ items gave outcome $\frac{1}{2} + d$ each. If the variance of this outcome data is $\frac {4}{3}$ then $\left| d \right|$ equals
The mean and standard deviation of $20$ observations were calculated as $10$ and $2.5$ respectively. It was found that by mistake one data value was taken as $25$ instead of $35 .$ If $\alpha$ and $\sqrt{\beta}$ are the mean and standard deviation respectively for correct data, then $(\alpha, \beta)$ is :
From a lot of $12$ items containing $3$ defectives, a sample of $5$ items is drawn at random. Let the random variable $\mathrm{X}$ denote the number of defective items in the sample. Let items in the sample be drawn one by one without replacement. If variance of $X$ is $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, then $n-m$ is equal to..........