The mean and standard deviation of $15$ observations are found to be $8$ and $3$ respectively. On rechecking it was found that, in the observations, $20$ was misread as $5$ . Then, the correct variance is equal to......
$7$
$20$
$19$
$17$
If mean and standard deviation of $5$ observations $x_1 ,x_2 ,x_3 ,x_4 ,x_5$ are $10$ and $3$, respectively, then the variance of $6$ observations $x_1 ,x_2 ,.....,x_3$ and $-50$ is equal to
The mean and variance of eight observations are $9$ and $9.25,$ respectively. If six of the observations are $6,7,10,12,12$ and $13,$ find the remaining two observations.
Let $x_1,x_2,.........,x_{100}$ are $100$ observations such that $\sum {{x_i} = 0,\,\sum\limits_{1 \leqslant i \leqslant j \leqslant 100} {\left| {{x_i}{x_j}} \right|} } = 80000\,\& $ mean deviation from their mean is $5,$ then their standard deviation, is-
The frequency distribution:
$\begin{array}{|l|l|l|l|l|l|l|} \hline X & 2 & 3 & 4 & 5 & 6 & 7 \\ f & 4 & 9 & 16 & 14 & 11 & 6 \\ \hline \end{array}$
Find the standard deviation.
The mean and standard deviation of $15$ observations were found to be $12$ and $3$ respectively. On rechecking it was found that an observation was read as $10$ in place of $12$ . If $\mu$ and $\sigma^2$ denote the mean and variance of the correct observations respectively, then $15\left(\mu+\mu^2+\sigma^2\right)$ is equal to$...................$