माना $S=\{x \in R: x \geq 0$ तथा $2|\sqrt{x}-3|+\sqrt{x}(\sqrt{x}-6)+6=0\}$ तो $S$ .........
में मात्र एक ही अवयव हैं।
में मात्र दो अवयव हैं।
में मात्र चार अवयव हैं।
एक रिक्त समुच्चय हैं।
समुच्चय $\left\{n \in \mathbb{Z}:\left|n^2-10 n+19\right|<6\right\}$ में अवयवों की संख्या है____________.
समुच्चय $\{1,2,3, \ldots, 100\}$ के $A_1, A_2, \ldots, A_m$ ऐसे अरिक्त $(non\,empty)$ उपसमुच्चय है कि
$(1)$ संख्याएँ $\left|A_1\right|,\left|A_2\right|, \ldots,\left|A_m\right|$ अभिन्न है
$(2)$ $A_1, A_2, \ldots, A_m$ युगल रूप से $(pair-wise)$ असंयुक्त $(disjoint)$ है
(जहाँ $|A|$ समुच्चय $A$ में अवयवों $(elements)$ की संख्या है) तब $m$ का महत्तम संभव मान होगा
माना $A =\left\{ n \in N \mid n ^{2} \leq n +10,000\right\}, B =\{3 k +1 \mid k \in N \}$ तथा $C =\{2 k \mid k \in N \}$ हैं, तो समुच्चय $A \cap( B - C )$ के सभी अवयवों का योगफल बराबर है ।
मान लें कि $a>0$ तथा $a \neq 1$ है। तब सभी धनात्मक वास्तविक संख्याओं $b$ का समुच्चय $S$, जो $\left(1+a^2\right)\left(1+b^2\right)=4 a b$ को संतुष्ट करता है, निम्न होगा:
समुच्चय $\left\{\mathrm{n} \in \mathbb{N}: 10 \leq \mathrm{n} \leq 100\right.$ तथा $3^{\mathrm{n}}-3,7$ का एक गुणज है \} में अवयवों की संख्या है :