If the system of linear equations $x+ ay+z\,= 3$ ; $x + 2y+ 2z\, = 6$ ; $x+5y+ 3z\, = b$ has no solution, then

  • [JEE MAIN 2018]
  • A

    $a\, = 1$ , $b\,\ne 9$

  • B

    $a\,\ne - 1$ , $b\, = 9$

  • C

    $a\, = - 1$ , $b = 9$

  • D

    $a\, = -1$ , $b\,\ne 9$

Similar Questions

The following system of linear equations  $2 x+3 y+2 z=9$ ; $3 x+2 y+2 z=9$  ;$x-y+4 z=8$

  • [JEE MAIN 2021]

The roots of the equation $\left| {\,\begin{array}{*{20}{c}}0&x&{16}\\x&5&7\\0&9&x\end{array}\,} \right| = 0$  are

If the system of equation $2x + 3y =\, -1; 3x + y = 2; \lambda x + 2y = \mu $ is consistent, then

Let $[.]$ , $ \{.\} $ and $sgn$$(.)$ denotes greatest integer function, fractional part function and signum function respectively, then value of determinant

$\left| {\begin{array}{*{20}{c}}
  {\left[ \pi  \right]}&{amp(1 + i\sqrt 3 )}&1 \\ 
  1&0&2 \\ 
  {\operatorname{sgn} ({{\cot }^{ - 1}}x)}&1&{\{ \pi \} } 
\end{array}} \right|$ is-

The roots of the equation $\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + x}&1\\1&1&{1 + x}\end{array}\,} \right| = 0$   are