Let $f(x) = \cos \sqrt {x,} $ then which of the following is true
$f(x)$ is periodic with period $\sqrt 2 \pi $
$f(x)$ is periodic with period $\sqrt \pi $
$f(x)$ is periodic with period $4{\pi ^2}$
$f(x)$ is not a periodic function
The number of solution of the equation,$\sum\limits_{r = 1}^5 {\cos (r\,x)} $ $= 0$ lying in $(0, \pi)$ is :
The values of $\theta $ satisfying $\sin 7\theta = \sin 4\theta - \sin \theta $ and $0 < \theta < \frac{\pi }{2}$ are
Let $A = \left\{ {\theta \,:\,\sin \,\left( \theta \right) = \tan \,\left( \theta \right)} \right\}$ and $B = \left\{ {\theta \,:\,\cos \,\left( \theta \right) = 1} \right\}$ be two sets. Then
The real roots of the equation $cos^7x\, +\, sin^4x\, =\, 1$ in the interval $(-\pi, \pi)$ are
Let,$S=\left\{\theta \in[0,2 \pi]: 8^{2 \sin ^{2} \theta}+8^{2 \cos ^{2} \theta}=16\right\}$. Then $n ( S )+\sum_{\theta \in S}\left(\sec \left(\frac{\pi}{4}+2 \theta\right) \operatorname{cosec}\left(\frac{\pi}{4}+2 \theta\right)\right)$ is equal to.