If $\cos 7\theta = \cos \theta - \sin 4\theta $, then the general value of $\theta $ is
$\frac{{n\pi }}{4},\frac{{n\pi }}{3} + \frac{\pi }{{18}}$
$\frac{{n\pi }}{3},\frac{{n\pi }}{3} + {( - 1)^n}\frac{\pi }{{18}}$
$\frac{{n\pi }}{4},\frac{{n\pi }}{3} + {( - 1)^n}\frac{\pi }{{18}}$
$\frac{{n\pi }}{6},\frac{{n\pi }}{3} + {( - 1)^n}\frac{\pi }{{18}}$
The number of solutions of the equation $2 \theta-\cos ^{2} \theta+\sqrt{2}=0$ is $R$ is equal to
General solution of $\tan 5\theta = \cot 2\theta $ is $($ where $n \in Z )$
Common roots of the equations $2{\sin ^2}x + {\sin ^2}2x = 2$ and $\sin 2x + \cos 2x = \tan x,$ are
The set of values of $‘a’$ for which the equation, $cos\, 2x + a\, sin\, x = 2a - 7$ possess a solution is :
Number of solutions of equation $secx = 1 + cosx + cos^2x + ........ \infty$ in $x \in [-50 \pi, 50 \pi]$ is -