Let $f (x)$ and $g (x)$ be two continuous functions defined from $R \rightarrow R$, such that $f (x_1) > f (x_2)$ and $g (x_1) < g (x_2), \forall x_1 > x_2$ , then solution set of $f\,\left( {\,g({\alpha ^2} - 2\alpha )\,} \right) >f\,\left( {\,g(3\alpha - 4)\,} \right)$ is

  • A

    $R$

  • B

    $\phi$

  • C

    $(1, 4)$

  • D

    $R - [1, 4]$

Similar Questions

Suppose that $f$ is differentiable for all $x$ and that $f '(x) \le 2$ for all x. If $f (1) = 2$ and $f (4) = 8$ then $f (2)$ has the value equal to

Verify Rolle's Theorem for the function $f(x)=x^{2}+2 x-8, x \in[-4,2]$

Which of the following function can satisfy Rolle's theorem ?

For the function$x + {1 \over x},x \in [1,\,3]$, the value of $ c$  for the mean value theorem is

If $f: \mathrm{R} \rightarrow \mathrm{R}$ is a twice differentiable function such that $f^{\prime \prime}(x)>0$ for all $x \in \mathrm{R}$, and $f\left(\frac{1}{2}\right)=\frac{1}{2}, f(1)=1$, then

  • [IIT 2017]