Let $r$ be a relation from $R$ (Set of real number) to $R$ defined by $r$ = $\left\{ {\left( {x,y} \right)\,|\,x,\,y\, \in \,R} \right.$ and $xy$ is an irrational number $\}$ , then relation $r$ is
reflexive and symmetric only
symmetric only
symmetric and transitive only
equivalence relation
Let $R$ be a relation over the set $N × N$ and it is defined by $(a,\,b)R(c,\,d) \Rightarrow a + d = b + c.$ Then $R$ is
Let ${R_1}$ be a relation defined by ${R_1} = \{ (a,\,b)|a \ge b,\,a,\,b \in R\} $. Then ${R_1}$ is
Check whether the relation $R$ defined in the set $\{1,2,3,4,5,6\}$ as $R =\{(a, b): b=a+1\}$ is reflexive, symmetric or transitive.
For $\alpha \in N$, consider a relation $R$ on $N$ given by $R =\{( x , y ): 3 x +\alpha y$ is a multiple of 7$\}$.The relation $R$ is an equivalence relation if and only if.
Consider the relations $R_1$ and $R_2$ defined as $a R_1 b$ $\Leftrightarrow a^2+b^2=1$ for all $a, b, \in R$ and $(a, b) R_2(c, d)$ $\Leftrightarrow a+d=b+c$ for all $(a, b),(c, d) \in N \times N$. Then