Let $r$ be a relation from $R$ (Set of real number) to $R$ defined by $r$ = $\left\{ {\left( {x,y} \right)\,|\,x,\,y\, \in \,R} \right.$ and $xy$ is an irrational number $\}$ , then relation $r$ is
reflexive and symmetric only
symmetric only
symmetric and transitive only
equivalence relation
Let $n$ be a fixed positive integer. Define a relation $R$ on the set $Z$ of integers by, $aRb \Leftrightarrow n|a - b$|. Then $R$ is
If $R$ is a relation on the set $N$, defined by $\left\{ {\left( {x,y} \right);3x + 3y = 10} \right\}$
Statement $-1$ : $R$ is symmetric
Statement $-2$ : $R$ is reflexive
Statement $-3$ : $R$ is transitive, then thecorrect sequence of given statements is
(where $T$ means true and $F$ means false)
Show that the relation $R$ in the set $A$ of all the books in a library of a college, given by $R =\{(x, y): x $ and $y$ have same number of pages $\}$ is an equivalence relation.
Solution set of $x \equiv 3$ (mod $7$), $p \in Z,$ is given by
Let $A =\{1,2,3,4, \ldots .10\}$ and $B =\{0,1,2,3,4\}$ The number of elements in the relation $R =\{( a , b )$ $\left.\in A \times A : 2( a - b )^2+3( a - b ) \in B \right\}$ is $.........$.