જો $r$ એ $R$ થી $R$ પરનો સંબંધ વ્યાખ્યાયિત હોય $r$ = $\left\{ {\left( {x,y} \right)\,|\,x,\,y\, \in \,R} \right.$ અને $xy$ એ અસમેય સંખ્યા છે $\}$ , હોય તો સંબંધ $r$ એ
માત્ર સ્વવાચક અને સમિત છે
માત્ર સમિત છે
માત્ર સમિત અને પરંપરિત છે
સામ્ય સંબંધ છે.
જે સ્વવાચક અને સંમિત હોય પરંતુ પરંપરિત ના હોય તેવા એક સંબંધનું ઉદાહરણ આપો
ગણ $\{1,2,3,4\}$ પરના સ્વવાચક ન હોય તેવા સંમિત સંબંધોની સંખ્યા ........................છે.
જો $A$ એ પરિવારના બાળકોનો અરિકત ગણ છે.જો $A$ પરનો સંબંધએ ‘$x$ એ $y$ નો ભાઇ છે ‘તો સંબંધ . . . .
ગણ $A=\{1,2,3\} $ લો. ઘટક $(1, 2)$ અને $(1, 3)$ સમાવતા હોય અને સ્વવાચક અને સંમિત હોય, પરંતુ પરંપરિત ન હોય તેવા સંબંધોની સંખ્યા ........ છે.
$\alpha \in N$ માટે $R =\{(x, y): 3 x+\alpha y$ એ $7$ નો ગુણિત છે. $\}$ દ્વારા આપેલ $N$ પરનો સંબંધ $R$ ધ્યાને લો. આ સંબંધ $R$ એ સામ્ય સંબંધ હોય, તો અને તો જ :