જો $A, B, C$ એ એવા ત્રણ ગણ છે કે જેથી $n(A \cap B) = n(B \cap C) = n(C \cap A) = n(A \cap B \cap C) = 2$ થાય તો $n((A × B) \cap (B × C)) $ =
$0$
$1$
$2$
$4$
જો $A=\{1,2,3\}, B=\{3,4\}$ અને $C=\{4,5,6\},$ તો શોધો. $A \times(B \cap C)$
જો $A=\{1,2,3\}, B=\{3,4\}$ અને $C=\{4,5,6\},$ તો શોધો. $(A \times B) \cup(A \times C)$
જો $A = \{2, 3, 5\}, B = \{2, 5, 6\},$ તો $(A -B) × (A \cap B)$ મેળવો.
જો $R$ વાસ્તવિક સંખ્યાઓનો ગણ હોય, તો $R \times R$ અને $R \times R \times R$ શું દર્શાવશે ?
જો $P$, $Q$ અને $R$ એ ગણ $A$ ના ઉપગણ હોય તો $R × (P^c \cup Q^c)^c =$
Confusing about what to choose? Our team will schedule a demo shortly.