Let $A, B, C$ are three sets such that $n(A \cap B) = n(B \cap C) = n(C \cap A) = n(A \cap B \cap C) = 2$, then $n((A × B) \cap (B × C)) $ is equal to -
$0$
$1$
$2$
$4$
The solution set of $8x \equiv 6(\bmod 14),\,x \in Z$, are
If $A \times B=\{(a, x),(a, y),(b, x),(b, y)\} .$ Find $A$ and $B$
If $(x+1, y-2)=(3,1),$ find the values of $\mathrm{x}$ and $\mathrm{y}$.
If $A \times B =\{(p, q),(p, r),(m, q),(m, r)\},$ find $A$ and $B$
Let $A = \{1, 2, 3, 4, 5\}; B = \{2, 3, 6, 7\}$. Then the number of elements in $(A × B) \cap (B × A)$ is