Let $A, B, C$ are three sets such that $n(A \cap B) = n(B \cap C) = n(C \cap A) = n(A \cap B \cap C) = 2$, then $n((A × B) \cap (B × C)) $ is equal to -
$0$
$1$
$2$
$4$
Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find
$(A \times B) \cap(A \times C)$
If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right),$ find the values of $x$ and $y$
If $(x+1, y-2)=(3,1),$ find the values of $\mathrm{x}$ and $\mathrm{y}$.
If $A=\{-1,1\},$ find $A \times A \times A.$
If $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\},$ then $(A -B) × (B -C)$ is
Confusing about what to choose? Our team will schedule a demo shortly.