જો $R$ વાસ્તવિક સંખ્યાઓનો ગણ હોય, તો $R \times R$ અને $R \times R \times R$ શું દર્શાવશે ?
The Cartesian product $R \times R$ represents the set $R \times R =\{(x, y): x, y \in R \}$ which represents the coordinates of all the points in two dimensional space and the cartesian product $R \times R \times R$ represents the set $R \times R \times R =\{(x, y, z): x, y, z \in R \}$ which represents the coordinates of all the points in three-dimensional space.
નીચે આપેલાં વિધાનોમાંથી કયું વિધાન સત્ય છે અને કયું વિધાન અસત્ય છે તે જણાવો તથા અસત્ય વિધાન સત્ય બને તે રીતે ફરી લખો : જો $P=\{m, n\}$ અને $Q=\{n, m\},$ તો $P \times Q=\{(m, n),(n, m)\}.$
જો $A = \{1, 2, 3, 4, 5\}; B = \{2, 3, 6, 7\}$. તો $(A × B) \cap (B × A)$ ની સભ્ય સંખ્યા મેળવો.
જો $A=\{1,2,3\}, B=\{3,4\}$ અને $C=\{4,5,6\},$ તો શોધો. $A \times(B \cup C)$
ધારો કે $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ અને $D=\{5,6,7,8\},$ તો નીચેનાં પરિણામો ચકાસો : $A \times C$ એ $B \times D$ નો ઉપગણ છે.
જો $A \times B =\{(p, q),(p, r),(m, q),(m, r)\},$ તો $A$ અને $B$ શોધો.