- Home
- Standard 12
- Mathematics
1.Relation and Function
normal
Let $f(\theta)$ is distance of the line $( \sqrt {\sin \theta } )x + ( \sqrt {\cos \theta })y +1 = 0$ from origin. Then the range of $f(\theta)$ is -
A
$\left[ {\frac{1}{{{2^{\frac{1}{4}}}}},\infty } \right)$
B
$\left[ {1,\sqrt 2 } \right]$
C
$[{1},{\infty } )$
D
$\left[ {\frac{1}{{{2^{\frac{1}{4}}}}},1 } \right]$
Solution
$f(\theta)=\frac{1}{\sqrt{\sin \theta+\cos \theta}}$
$\theta \in\left[0, \frac{\pi}{2}\right]$
Maximum value $=\frac{1}{0+1}=1$
minimum value $ = \frac{1}{{\sqrt 2 }} = \frac{1}{{{2^{1/4}}}}$
Standard 12
Mathematics