Let $f$ be a function satisfying $f(xy) = \frac{f(x)}{y}$ for all positive real numbers $x$ and $y.$ If $ f(30) = 20,$ then the value of $f(40)$ is-
$15$
$20$
$40$
$60$
The graph of the function $y = f(x)$ is symmetrical about the line $x = 2$, then
Show that the function $f: R \rightarrow R$ defined as $f(x)=x^{2},$ is neither one-one nor onto.
The range of $f(x) = \cos (x/3)$ is
If the domain of the function $f(x)=\log _e$ $\left(\frac{2 x+3}{4 x^2+x-3}\right)+\cos ^{-1}\left(\frac{2 x-1}{x+2}\right)$ is $(\alpha, \beta]$, then the value of $5 \beta-4 \alpha$ is equal to
The domain of the function
$f(x)=\frac{\cos ^{-1}\left(\frac{x^{2}-5 x+6}{x^{2}-9}\right)}{\log _{e}\left(x^{2}-3 x+2\right)} \text { is }$