જો $\alpha$ અને $\beta$ એ સમીકરણ $x^3 + 3x^2 -1 = 0$ ના બે ભિન્ન બીજો હોય તો ક્યાં સમીકરણનો ઉકેલ $(\alpha \beta )$ થાય ?
$x^3 -3x -1 =0$
$x^3 -3x^2 + 1 = 0$
$x^3 + x^2 -3x + 1 = 0$
$x^3 + x^2 + 3x -1 = 0$
જો $a, b, c$ વાસ્તવિક હોય અને $a > 0$ હોય, તો $ax^2 + bx + c$ જ્યાં $x$ પણ વાસ્તવિક હોય તેનું લઘુત્તમ મૂલ્ય કેટલું થાય ?
સમીકરણ $\frac{{p + q - x}}{r} + \frac{{q + r - x}}{p}\,\, + \,\,\frac{{r + p - x}}{q}\,\, + \;\,\frac{{4x}}{{p + q + r}} = 0$ ને ઉકેલ........છે
જો $a$ ,$b$, $c$ , $d$ , $e$ એ પાંચ સંખ્યાઓ સમીકરણ સંહિતાઓ ને સંતોષે
$2a + b + c + d + e = 6$
$a + 2b + c + d + e = 12$
$a + b + 2c + d + e = 24$
$a + b + c + 2d + e = 48$
$a + b + c + d + 2e = 96$ ,
તો $|c|$ ની કિમત મેળવો
જો $a$ અને $b$ એ સમીકરણ $x^2-7 x-1=0$ નાં બીજ હોય, તો $\frac{a^{21}+b^{21}+a^{17}+b^{17}}{a^{19}+b^{19}}$ નું મૂલ્ય $......$ છે.
જો $\alpha$, $\beta$ ,$\gamma$ એ સમીકરણ $x^3 -x -1 = 0$ ના ઉકેલો હોય તો જે સમીકરણના ઉકેલો $\frac{1}{{\beta + \gamma }},\frac{1}{{\gamma + \alpha }},\frac{1}{{\alpha + \beta }}$ હોય તે સમીકરણ મેળવો