Let $R$ be a relation defined on $N \times N$ by $(a, b) R(c, d) \Leftrightarrow a(b + c) = c(a + d).$ Then $R$ is
reflexive, symmetric
symmetric, transitive
transitive only
equivalence
Given the relation $R = \{(1, 2), (2, 3)\}$ on the set $A = {1, 2, 3}$, the minimum number of ordered pairs which when added to $R$ make it an equivalence relation is
Let $R$ and $S$ be two non-void relations on a set $A$. Which of the following statements is false
Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{R}=\{(1,2),(2,3),(1,4)\}$ be a relation on $\mathrm{A}$. Let $\mathrm{S}$ be the equivalence relation on $A$ such that $\mathrm{R} \subset \mathrm{S}$ and the number of elements in $\mathrm{S}$ is $\mathrm{n}$. Then, the minimum value of $\mathrm{n}$ is...............
Let $A = \{1, 2, 3\}, B = \{1, 3, 5\}$. $A$ relation $R:A \to B$ is defined by $R = \{(1, 3), (1, 5), (2, 1)\}$. Then ${R^{ - 1}}$ is defined by
Let $R = \{ (3,\,3),\;(6,\;6),\;(9,\,9),\;(12,\,12),\;(6,\,12),\;(3,\,9),(3,\,12),\,(3,\,6)\} $ be a relation on the set $A = \{ 3,\,6,\,9,\,12\} $. The relation is