Let $N$ denote the set of all natural numbers. Define two binary relations on $N$ as $R_1 = \{(x,y) \in N \times N : 2x + y= 10\}$ and $R_2 = \{(x,y) \in N\times N : x+ 2y= 10\} $. Then
Both $R_1$ and $R_2$ are transitive relations
Both $R_1$ and $R_2$ are symmetric relations
Range of $R_2$ is $\{1, 2, 3, 4\}$
Range of $R_1$ is $\{ 2, 4, 8\}$
Show that the relation $\mathrm{R}$ in the set $\mathrm{A}$ of points in a plane given by $\mathrm{R} =\{( \mathrm{P} ,\, \mathrm{Q} ):$ distance of the point $\mathrm{P}$ from the origin is same as the distance of the point $\mathrm{Q}$ from the origin $\}$, is an equivalence relation. Further, show that the set of all points related to a point $\mathrm{P} \neq(0,\,0)$ is the circle passing through $\mathrm{P}$ with origin as centre.
Let $r$ be a relation from $R$ (set of real numbers) to $R$ defined by $r = \{(a,b) \, | a,b \in R$ and $a - b + \sqrt 3$ is an irrational number$\}$ The relation $r$ is
Determine whether each of the following relations are reflexive, symmetric and transitive:
Relation $\mathrm{R}$ in the set $\mathrm{Z}$ of all integers defined as $\mathrm{R} =\{(\mathrm{x}, \mathrm{y}): \mathrm{x}-\mathrm{y}$ is an integer $\}$
Give an example of a relation. Which is Reflexive and transitive but not symmetric.
Let $R$ be a relation defined on $N \times N$ by $(a, b) R(c, d) \Leftrightarrow a(b + c) = c(a + d).$ Then $R$ is