Let $N$ denote the set of all natural numbers. Define two binary relations on $N$ as $R_1 = \{(x,y) \in  N \times  N : 2x + y= 10\}$ and $R_2 = \{(x,y) \in  N\times  N : x+ 2y= 10\} $. Then

  • [JEE MAIN 2018]
  • A

    Both $R_1$ and $R_2$  are transitive relations

  • B

    Both $R_1$ and $R_2$ are symmetric relations

  • C

    Range of  $R_2$ is $\{1, 2, 3, 4\}$

  • D

    Range of $R_1$  is $\{ 2, 4, 8\}$

Similar Questions

Show that the relation $\mathrm{R}$ in the set $\mathrm{A}$ of points in a plane given by $\mathrm{R} =\{( \mathrm{P} ,\, \mathrm{Q} ):$ distance of the point $\mathrm{P}$ from the origin is same as the distance of the point $\mathrm{Q}$ from the origin $\}$, is an equivalence relation. Further, show that the set of all points related to a point $\mathrm{P} \neq(0,\,0)$ is the circle passing through $\mathrm{P}$ with origin as centre.

Let $r$ be a relation from $R$ (set of real numbers) to $R$ defined by $r = \{(a,b) \, | a,b \in R$  and  $a - b + \sqrt 3$ is an irrational number$\}$ The relation $r$ is

Determine whether each of the following relations are reflexive, symmetric and transitive:

Relation $\mathrm{R}$ in the set $\mathrm{Z}$ of all integers defined as $\mathrm{R} =\{(\mathrm{x}, \mathrm{y}): \mathrm{x}-\mathrm{y}$ is an integer $\}$

Give an example of a relation. Which is Reflexive and transitive but not symmetric.

Let $R$ be a relation defined on $N \times N$ by $(a, b) R(c, d) \Leftrightarrow  a(b + c) = c(a + d).$ Then $R$ is