Let $M$ denotes set of all $3 \times 3$ non singular matrices. Define the relation $R$ by
$R = \{ (A,B) \in M \times M$ : $AB = BA\} ,$ then $R$ is-
Reflexive, symmetric but not transitive
Reflexive, symmetric $\&$ transitive
Reflexive, transitive but not symmetric
Neither reflexive nor symmetric nor transitive
Let $P = \{ (x,\,y)|{x^2} + {y^2} = 1,\,x,\,y \in R\} $. Then $P$ is
Let $A=\{1,2,3\} .$ Then show that the number of relations containing $(1,2) $ and $(2,3)$ which are reflexive and transitive but not symmetric is four.
Let $R$ be a relation over the set $N × N$ and it is defined by $(a,\,b)R(c,\,d) \Rightarrow a + d = b + c.$ Then $R$ is
Let $S=\{1,2,3, \ldots, 10\}$. Suppose $M$ is the set of all the subsets of $S$, then the relation $R=\{(A, B): A \cap B \neq \phi ; A, B \in M\}$ is :
Let $R$ be a relation on the set of all natural numbers given by $\alpha b \Leftrightarrow \alpha$ divides $b^2$.
Which of the following properties does $R$ satisfy?
$I.$ Reflexivity $II.$ Symmetry $III.$ Transitivity