$f(x)$ અને $g(x)$ એ બે વિધેય માટે $f\left( x \right) = \frac{{2\sin \pi x}}{x}$ અને $g\left( x \right) = f\left( {1 - x} \right) + f\left( x \right)$ છે. જો $g\left( x \right) = kf(\frac{x}{2})f\left( {\frac{{1 - x}}{2}} \right)$ હોય તો $k$ ની કિમત ........... થાય.

  • A

    $\frac{1}{2}$

  • B

    $\frac{1}{4}$

  • C

    $\frac{1}{6}$

  • D

    $\frac{1}{8}$

Similar Questions

ધારો કે $a,b,c\; \in R.$ જો $f\left( x \right) = a{x^2} + bx + c$ હોય કે જેથી $a + b + c = 3$ અને $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy,$ $\forall x,y \in R,$ તો $\mathop \sum \limits_{n = 1}^{10} f\left( n \right)$ની કિંમત મેળવો.

  • [JEE MAIN 2017]

$\left[ {\frac{1}{2}} \right] + \left[ {\frac{1}{2} + \frac{1}{{100}}} \right] + \left[ {\frac{1}{2} + \frac{2}{{100}}} \right] + .... + \left[ {\frac{1}{2} + \frac{{99}}{{100}}} \right]  = . . . . $ (કે જ્યાં $[x]$ એ મહતમ પૃણાંક વિધેય છે )

  • [IIT 1994]

અહી $\mathrm{f}(\mathrm{x})$ એ $3$ ઘાતાંક વાળી બહુપદી છે કે જેથી  $\mathrm{k}=2,3,4,5 $ માટે $\mathrm{f}(\mathrm{k})=-\frac{2}{\mathrm{k}}$ થાય છે તો  $52-10 \mathrm{f}(10)$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

જો $x \in R$ માટે $f(x) = \frac{{{{\cos }^2}x + {{\sin }^4}x}}{{{{\sin }^2}x + {{\cos }^4}x}}$ , તો $f(2002) = $

જો $f(x) = \cos (\log x)$, તો $f({x^2})f({y^2}) - \frac{1}{2}\left[ {f\,\left( {\frac{{{x^2}}}{2}} \right) + f\left( {\frac{{{x^2}}}{{{y^2}}}} \right)} \right] =$