સાબિત કરો કે વિધેય $f : R \rightarrow\{ x \in R :-1< x <1\}$, $f ( x )=\frac{x}{1+|x|^{\prime}} x \in R$, એક-એક અને વ્યાપ્ત વિધેય છે.
It is given that $f : R \rightarrow\{ x \in R :-1< x <1\}$ is defined as $f ( x )=\frac{x}{1+|x|^{\prime}} x \in R$
For one-one
Suppose $f(x)=f(y),$ where $x, y \in R$
$\Rightarrow \frac{x}{1+|x|}=\frac{y}{1+|y|}$
It can be observed that if $x$ is positive and $y$ is negative,
Then, we have $\frac{x}{1+x}=\frac{y}{1+y} \Rightarrow 2 x y=x-y$
since, $x$ is positive and $y$ is negative
$x>y \Rightarrow x-y>0$
But, $2 x y$ is negative.
Then $2 x y \neq x-y$
Thus, the case of $x$ being positive and $y $ being negative can be ruled out.
Under a similar argument, $ x$ being negative and $y$ being positive can also be ruled out.
$\therefore $ $x$ and $y$ have to be either positive or negative.
When $x$ and $y$ are both positive, we have
$f(x)=f(y) \Rightarrow \frac{x}{1+x}$ $=\frac{y}{1+y} \Rightarrow x+x y=y+x y \Rightarrow x=y$
When $x$ and $y$ are both negative, we have
$f(x)=f(y) \Rightarrow \frac{x}{1-x}=\frac{y}{1-y} $ $\Rightarrow x-x y=y-x y \Rightarrow x=y$
$\therefore f$ is one $-$ one.
For onto
Now, let $y \in R$ such that $-1 < y < 1$
$(x)=f\left(\frac{y}{1+y}\right)$ $=\frac{\left(\frac{y}{1+y}\right)}{1+\left|\frac{y}{1+y}\right|}$ $=\frac{\frac{y}{1+y}}{1+\left(\frac{-y}{1+y}\right)}$ $=\frac{y}{1+y-y}=y$
If $y$ is positive, then, there exists $x=y 1-y \in R$ such that
$(x)=f\left(\frac{y}{1-y}\right)$ $=\frac{\left(\frac{y}{1-y}\right)}{1+\left|\frac{y}{1-y}\right|}$ $=\frac{\frac{y}{1-y}}{1+\left(\frac{-y}{1-y}\right)}$ $=\frac{y}{1-y+y}=y$
$\therefore f$ is onto.
Hence, $f$ is one $-$ one and onto.
$f (x)$ = $\sqrt {{{\log }_2}\left( {\frac{{10x - 4}}{{4 - {x^2}}}} \right) - 1} $ નો પ્રદેશગણ મેળવો.
જો $f(x)$ માટે $f\left( {\frac{{5x - 3y}}{2}} \right)\, = \,\frac{{5f(x) - 3f(y)}}{2}\,\forall x,y\in R$ $f(0) = 1, f '(0) = 2$ હોય તો $sin \ (f(x))$ નો આવર્તમાન મેળવો.
ધારો કે વિધેય $f: R \rightarrow R$ માટે $f(x+y)=f(x) f(y)$ બધા $x, y \in R$ અને $f(1)=3$ થાય જો $\sum \limits_{i=1}^{n} f(i)=363,$ હોય તો $n$ ની કિમત શોધો
ગણ $A$ માં $3$ સભ્ય છે અને $B$ માં $4$ સભ્ય છે . જો $A$ થી $B$ માં એક-એક વિધેય ની સંખ્યા મેળવો.
વિધેય $f(x) = log|5{x} - 2x|$ નો પ્રદેશ્ગણ $x \in R - A$ હોય તો $n(A)$ = ....... થાય. ( જ્યા $\{.\}$ અપુર્ણાક વિધેય છે )