3 and 4 .Determinants and Matrices
normal

Let $a, b, c > 0$ and $\Delta  = \left| \begin{gathered}
  a + b\,\,b\,\,c \hfill \\
  b\, + \,c\,\,c\,\,\,a \hfill \\
  c + a\,\,a\,\,b \hfill \\ 
\end{gathered}  \right| ,$ then which of the following is not correct?

A

$\Delta = -[a^3 + b^3 + c^3 - 3abc$]

B

$\Delta\leq 0$

C

$\Delta = 0 \Rightarrow\   a + b + c = 0$

D

$\Delta  = 0$ if $a = b = c$

Solution

$c_{1} \rightarrow c_{1}-c_{2}$

$\Delta=\left|\begin{array}{lll}{a} & {b} & {c} \\ {b} & {c} & {a} \\ {c} & {a} & {b}\end{array}\right|=-\left[a^{3}+b^{3}+c^{3}-3 a b c\right]$

Or $\Delta=-\frac{1}{2}(a+b+c)\left[(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right]$

So $\Delta<0$

Also $\Delta=0 \Rightarrow \mathrm{a}=\mathrm{b}=\mathrm{c}(\therefore \mathrm{a}+\mathrm{b}+\mathrm{c}>0)$

Since $a+b+c \neq 0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.