Let $a, b, c > 0$ and $\Delta  = \left| \begin{gathered}
  a + b\,\,b\,\,c \hfill \\
  b\, + \,c\,\,c\,\,\,a \hfill \\
  c + a\,\,a\,\,b \hfill \\ 
\end{gathered}  \right| ,$ then which of the following is not correct?

  • A

    $\Delta = -[a^3 + b^3 + c^3 - 3abc$]

  • B

    $\Delta\leq 0$

  • C

    $\Delta = 0 \Rightarrow\   a + b + c = 0$

  • D

    $\Delta  = 0$ if $a = b = c$

Similar Questions

Let $\mathrm{A}$ be a square matrix of order $3 \times 3$ , then $|\mathrm{k A}|$ is equal to

If $\Delta = \left| {\,\begin{array}{*{20}{c}}x&y&z\\p&q&r\\a&b&c\end{array}\,} \right|,$ then $\left| {\,\begin{array}{*{20}{c}}x&{2y}&z\\{2p}&{4q}&{2r}\\a&{2b}&c\end{array}\,} \right|$equals

The existence of the unique solution of the system $x + y + z = \lambda ,$ $5x - y + \mu z = 10$, $2x + 3y - z = 6$ depends on

If the system of linear equations $2 \mathrm{x}+2 \mathrm{ay}+\mathrm{az}=0$ ; $2 x+3 b y+b z=0$ ; $2 \mathrm{x}+4 \mathrm{cy}+\mathrm{cz}=0$ ; where $a, b, c \in R$ are non-zero and distinct; has a non-zero solution, then 

  • [JEE MAIN 2020]

If $2x + 3y - 5z = 7, \,x + y + z = 6$, $3x - 4y + 2z = 1,$ then  $x =$