If the system of equation $3x - 2y + z = 0$, $\lambda x - 14y + 15z = 0$, $x + 2y + 3z = 0$ have a non-trivial solution, then $\lambda = $
$5$
$-5$
$-29$
$29$
Let $M$ and $N$ be two $3 \times 3$ matrices such that $M N=N M$. Further, if $M \neq N^2$ and $M^2=N^4$, then
$(A)$ determinant of $\left( M ^2+ MN ^2\right)$ is $0$
$(B)$ there is a $3 \times 3$ non-zero matrix $U$ such that $\left( M ^2+ MN ^2\right) U$ is the zero matrix
$(C)$ determinant of $\left( M ^2+ MN ^2\right) \geq 1$
$(D)$ for a $3 \times 3$ matrix $U$, if $\left( M ^2+ MN ^2\right) U$ equals the zero matrix then $U$ is the zero matrix
If the system of equations
$x+y+z=2$
$2 x+4 y-z=6$
$3 x+2 y+\lambda z=\mu$ has infinitely many solutions, then
Statement $-1$ : The system of linear equations
$x + \left( {\sin \,\alpha } \right)y + \left( {\cos \,\alpha } \right)z = 0$
$x + \left( {\cos \,\alpha } \right)y + \left( {\sin \alpha } \right)z = 0$
$x - \left( {\sin \,\alpha } \right)y - \left( {\cos \alpha } \right)z = 0$
has a non-trivial solution for only one value of $\alpha $ lying in the interval $\left( {0\,,\,\frac{\pi }{2}} \right)$
Statement $-2$ : The equation in $\alpha $
$\left| {\begin{array}{*{20}{c}}
{\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha } \\
{\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha } \\
{\cos {\mkern 1mu} \alpha }&{ - \sin {\mkern 1mu} \alpha }&{ - \cos {\mkern 1mu} \alpha }
\end{array}} \right| = 0$
has only one solution lying in the interval $\left( {0\,,\,\frac{\pi }{2}} \right)$
Let the system of linear equations $4 x+\lambda y+2 z=0$ ; $2 x-y+z=0$ ; $\mu x +2 y +3 z =0, \lambda, \mu \in R$ has a non-trivial solution. Then which of the following is true?
If $B$ is a $3 \times 3$ matrix such that $B^2 = 0$, then det. $[( I+ B)^{50} -50B]$ is equal to