The determinant $\left| {\begin{array}{*{20}{c}}{\cos \,\,(\theta \, + \,\phi )}&{ - \,\sin \,\,(\theta \, + \,\phi )}&{\cos \,2\phi }\\{\sin \,\theta }&{\cos \,\theta }&{\sin \,\phi }\\{ - \,\cos \,\theta }&{\sin \,\theta }&{\cos \,\phi }\end{array}} \right|$ is :

  • A
    $0$
  • B
    independent of $\theta$
  • C
    independent of $\phi$
  • D
    independent of $\theta \, \& \, \phi$ both

Similar Questions

If $a,b,c$ and $d $ are complex numbers, then the determinant $\Delta = \left| {\,\begin{array}{*{20}{c}}2&{a + b + c + d}&{ab + cd}\\{a + b + c + d}&{2(a + b)(c + d)}&{ab(c + d) + cd(a + b)}\\{ab + cd}&{ab(c + d) + cd(a + d)}&{2abcd}\end{array}} \right|$is

Show that points $A(a, b+c), B(b, c+a), C(c, a+b)$ are collinear

$\left| {\,\begin{array}{*{20}{c}}1&5&\pi \\{{{\log }_e}e}&5&{\sqrt 5 }\\{{{\log }_{10}}10}&5&e\end{array}\,} \right| = $

Consider the system of linear equations ${a_1}x + {b_1}y + {c_1}z + {d_1} = 0$, ${a_2}x + {b_2}y + {c_2}z + {d_2} = 0$ and ${a_3}x + {b_3}y + {c_3}z + {d_3} = 0$. Let us denote by $\Delta (a,b,c)$ the determinant $\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right|$ if $\Delta (a,b,c) \ne 0$, then the value of $x$ in the unique solution of the above equations is

Let $S=\left\{A=\left(\begin{array}{lll}0 & 1 & c \\ 1 & a & d \\ 1 & b & e\end{array}\right): a, b, c, d, e \in\{0,1\}\right.$ and $\left.|A| \in\{-1,1\}\right\}$, where $|A|$ denotes the determinant of $A$. Then the number of elements in $S$ is. . . . .

  • [IIT 2024]