જો $a, b, c > 0$ અને $\Delta = \left| \begin{gathered}
a + b\,\,b\,\,c \hfill \\
b\, + \,c\,\,c\,\,\,a \hfill \\
c + a\,\,a\,\,b \hfill \\
\end{gathered} \right| ,$ હોય તો આપલે પૈકી ક્યૂ વિધાન અસત્ય થાય.
$\Delta = -[a^3 + b^3 + c^3 - 3abc$]
$\Delta\leq 0$
$\Delta = 0 \Rightarrow\ a + b + c = 0$
જો $a = b = c$ તો $\Delta = 0$
$\left| {\,\begin{array}{*{20}{c}}{a - b}&{b - c}&{c - a}\\{x - y}&{y - z}&{z - x}\\{p - q}&{q - r}&{r - p}\end{array}\,} \right| = $
$x$ નું મૂલ્ય શોધો : $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$
સુરેખ સમીકરણ સંહતિ
$2 x+4 y+2 a z=b$
$x+2 y+3 z=4$
$2 x-5 y+2 z=8$
માટે નીચેનામાથી ક્યું સાચું નથી?
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}0&x&{16}\\x&5&7\\0&9&x\end{array}\,} \right| = 0$ ના બીજ મેળવો.
જો ${\left| {\,\begin{array}{*{20}{c}}4&1\\2&1\end{array}\,} \right|^2} = \left| {\,\begin{array}{*{20}{c}}3&2\\1&x\end{array}\,} \right| - \left| {\,\begin{array}{*{20}{c}}x&3\\{ - 2}&1\end{array}\,} \right|$ તો $x =$