Let $P(x) = x^3 - ax^2 + bx + c$ where $a, b, c \in R$ has integral roots such that $P(6) = 3$, then $' a '$ cannot be equal to

  • A

    $13$

  • B

    $15$

  • C

    $17$

  • D

    $21$

Similar Questions

For what value of $\lambda$ the sum of the squares of the roots of ${x^2} + (2 + \lambda )\,x - \frac{1}{2}(1 + \lambda ) = 0$ is minimum

If the roots of the equation $8{x^3} - 14{x^2} + 7x - 1 = 0$ are in $G.P.$, then the roots are

In the real number system, the equation $\sqrt{x+3-4 \sqrt{x-1}}+\sqrt{x+8-6 \sqrt{x-1}}=1$ has

  • [KVPY 2012]

If $\alpha $ and $\beta $ are the roots of the quadratic equation, $x^2 + x\, sin\,\theta  -2sin\,\theta  = 0$, $\theta  \in \left( {0,\frac{\pi }{2}} \right)$ then $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha  - \beta } \right)}^{24}}}}$ is equal to

  • [JEE MAIN 2019]

If $\alpha , \beta$ and $\gamma$ are the roots of ${x^3} + 8 = 0$, then the equation whose roots are ${\alpha ^2},{\beta ^2}$ and  ${\gamma ^2}$ is