4-2.Quadratic Equations and Inequations
normal

Let $P(x) = x^3 - ax^2 + bx + c$ where $a, b, c \in R$ has integral roots such that $P(6) = 3$, then $' a '$ cannot be equal to

A

$13$

B

$15$

C

$17$

D

$21$

Solution

$\mathrm{P}(\mathrm{x})=\mathrm{x}^{3}-\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$

$=(\mathrm{x}-\alpha)(\mathrm{x}-\beta)(\mathrm{x}-\gamma)$

Put $x=6,$ then

$3=(6-\alpha)(6-\beta)(6-\gamma)$

Various possibilities are

$(i)$ $\alpha=3 ; \beta=5 ; \gamma=5 \Rightarrow \mathrm{a}=13$

$(ii)$ $\alpha=3 ; \beta=7 ; \gamma=7 \Rightarrow \mathrm{a}=17$

$(iii)$ $\alpha=9 ; \beta=5 ; \gamma=7 \Rightarrow \mathrm{a}=21$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.