જો $P(x) = x^3 - ax^2 + bx + c$ જ્યાં $a, b, c \in R$ ને પૂર્ણાક ઉકેલો મળે કે જેથી $P(6) = 3$, થાય તો $' a '$ ની કિમત ......... શક્ય નથી
$13$
$15$
$17$
$21$
એક ત્રિઘાત સમીકરણમાં $x^2$ નો સહગુણક શૂન્ય અને બાકીના સહગુણક વાસ્તવિક અને એક ઉકેલ $\alpha = 3 + 4\, i$ તથા બાકીના ઉકેલો $\beta$ અને $\gamma$ હોય તો $\alpha \beta \gamma$ ની કિમત મેળવો
$\mathrm{k}(\mathrm{k} \neq 0 )$ ની બધીજ પૂર્ણાંક સંખ્યાનો સરવાળો મેળવો કે જેથી $x$ નું સમીકરણ $\frac{2}{x-1}-\frac{1}{x-2}=\frac{2}{k}$ ને એકપણ વાસ્તવિક બીજ ન હોય .
સમીકરણ $x|x-1|+|x+2|+a=0$ ને બરાબર એક જ વાસ્તવિક બીજ હોય, તેવા તમામ $a \in R$ નો ગણ $........$ છે.
જો ${x^2} + px + 1$ એ સમીકરણ $a{x^3} + bx + c$ નો એક અવયવ હોય તો
સમીકરણ ${\left( {{x^2} - 5x + 5} \right)^{{x^2} + 4x - 60}} = 1$ ને સંતોષતી $x $ ની બધીજ વાસ્તવિક કિંમતોનો સરવાળો . . . . છે.