Let $r_1, r_2, r_3$ be roots of equation $x^3 -2x^2 + 4x + 5074 = 0$, then the value of $(r_1 + 2)(r_2 + 2)(r_3 + 2)$ is

  • A

    $5050$

  • B

    $-5050$

  • C

    $-5066$

  • D

    $-5068$

Similar Questions

Let $\alpha$ and $\beta$ be the roots of the equation $\mathrm{x}^{2}-\mathrm{x}-1=0 .$ If $\mathrm{p}_{\mathrm{k}}=(\alpha)^{\mathrm{k}}+(\beta)^{\mathrm{k}}, \mathrm{k} \geq 1,$ then which one of the following statements is not true?

  • [JEE MAIN 2020]

The locus of the point $P=(a, b)$ where $a, b$ are real numbers such that the roots of $x^3+a x^2+b x+a=0$ are in arithmetic progression is

  • [KVPY 2011]

The number of integers $k$ for which the equation $x^3-27 x+k=0$ has at least two distinct integer roots is

  • [KVPY 2016]

The roots of the equation ${x^4} - 2{x^3} + x = 380$ are

Let $\alpha, \beta, \gamma$ be the three roots of the equation $x ^3+ bx + c =0$. If $\beta \gamma=1=-\alpha$, then $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$ is equal to $......$.

  • [JEE MAIN 2023]