Let $r_1, r_2, r_3$ be roots of equation $x^3 -2x^2 + 4x + 5074 = 0$, then the value of $(r_1 + 2)(r_2 + 2)(r_3 + 2)$ is
$5050$
$-5050$
$-5066$
$-5068$
If $\alpha ,\beta ,\gamma $are the roots of the equation ${x^3} + x + 1 = 0$, then the value of ${\alpha ^3}{\beta ^3}{\gamma ^3}$
Let $a, b, c$ be non-zero real roots of the equation $x^3+a x^2+b x+c=0$. Then,
What is the sum of all natural numbers $n$ such that the product of the digits of $n$ (in base $10$ ) is equal to $n^2-10 n-36 ?$
If $x$ is real and satisfies $x + 2 > \sqrt {x + 4} ,$ then
The number of real solutions of the equation $3\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+5=0$, is