1.Relation and Function
normal

Let $f(x ) = x^3 - 2x + 2$. If real numbers $a$, $b$ and $c$ such that $\left| {f\left( a \right)} \right| + \left| {f\left( b \right)} \right| + \left| {f\left( c \right)} \right| = 0$ then the value of ${f^2}\left( {{a^2} + \frac{2}{a}} \right) + {f^2}\left( {{b^2} + \frac{2}{b}} \right) - {f^2}\left( {{c^2} + \frac{2}{c}} \right)$ equal to

A

$6$

B

$24$

C

$36$

D

$48$

Solution

$x^{3}-2 x+2=0\left\{\begin{array}{l}{a} \\ {b} \\ {c}\end{array}\right.$

and $a^{2}+\frac{2}{a}=b^{2}+\frac{2}{b}=c^{2}+\frac{2}{c}=2$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.