Let $P(2,2)$ be a point on an ellipse whose foci are $(5,2)$ and $(2,6)$, then eccentricity of ellipse is
$\frac{2}{3}$
$\frac{5}{7}$
$\frac{1}{3}$
$\frac{3}{4}$
An ellipse is inscribed in a circle and a point is inside a circle is choosen at random. If the probability that this point lies outside the ellipse is $\frac {2}{3}$ then eccentricity of ellipse is $\frac{{a\sqrt b }}{c}$ . Where $gcd( a, c) = 1$ and $b$ is square free integer ($b$ is not divisible by square of any integer except $1$ ) then $a · b · c$ is
If the normal to the ellipse $3x^2 + 4y^2 = 12$ at a point $P$ on it is parallel to the line, $2x + y = 4$ and the tangent to the ellipse at $P$ passes through $Q(4, 4)$ then $PQ$ is equal to
An ellipse has $OB$ as semi minor axis, $F$ and $F'$ its foci and the angle $FBF'$ is a right angle. Then the eccentricity of the ellipse is
If a tangent to the ellipse $x^{2}+4 y^{2}=4$ meets the tangents at the extremities of its major axis at $\mathrm{B}$ and $\mathrm{C}$, then the circle with $\mathrm{BC}$ as diameter passes through the point:
If the normal at one end of the latus rectum of an ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ passes through one end of the minor axis then :