Tangent is drawn to ellipse $\frac{{{x^2}}}{{27}} + {y^2} = 1$ at $(3\sqrt 3 \cos \theta ,\;\sin \theta )$ where $\theta \in (0,\;\pi /2)$. Then the value of $\theta $ such that sum of intercepts on axes made by this tangent is minimum, is
$\pi /3$
$\pi /6$
$\pi /8$
$\pi /4$
Equation of the ellipse with eccentricity $\frac{1}{2}$ and foci at $( \pm 1,\;0)$ is
If the angle between the lines joining the end points of minor axis of an ellipse with its foci is $\pi\over2$, then the eccentricity of the ellipse is
Let $P\left(x_1, y_1\right)$ and $Q\left(x_2, y_2\right), y_1<0, y_2<0$, be the end points of the latus rectum of the ellipse $x^2+4 y^2=4$. The equations of parabolas with latus rectum $P Q$ are
$(A)$ $x^2+2 \sqrt{3} y=3+\sqrt{3}$
$(B)$ $x^2-2 \sqrt{3} y=3+\sqrt{3}$
$(C)$ $x^2+2 \sqrt{3} y=3-\sqrt{3}$
$(D)$ $x^2-2 \sqrt{3} y=3-\sqrt{3}$
The eccentricity of ellipse $(x-3)^2 + (y -4)^2 = \frac{y^2}{9} +16 ,$ is -
Which one of the following is the common tangent to the ellipses, $\frac{{{x^2}}}{{{a^2} + {b^2}}} + \frac{{{y^2}}}{{{b^2}}}$ $=1\&$ $ \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{a^2} + {b^2}}}$ $=1$