- Home
- Standard 11
- Mathematics
7.Binomial Theorem
normal
Let $K$ be the coefficient of $x^4$ in the expansion of $( 1 + x + ax^2) ^{10}$ . What is the value of $'a'$ that minimizes $K$ ?
A
$4$
B
$-4$
C
$-7$
D
$7$
Solution
There will be $3$ cases
Case-$I$: Power $2$ goes to $a x^{2}$ and $8$ goes to $'1'$
So cuefficient $ = \frac{{10{\rm{!}}{{\rm{a}}^2}}}{{2{\rm{!}}8{\rm{!}}}}$ …..$(1)$
Case-$II$ : Power $4$ goes to $x $ and $ 6$ goes to $1$
So coefficient $=\frac{10 !}{4 ! 6 !}$ ……$(2)$
Case-$III$ : Power $2$ goes $x$ and $1$ goes to $a x^{2}$ and $7$ goes to $1$
So coefficient $=\frac{10 ! a}{2 ! 1 ! 7 !}$ ……$(3)$
So final coefficient $=(1)+(2)+(3)$
$f(1)=45 a^{2}+360 a+210$
So $f(1)=15\left(3 a^{2}+2.4 a+14\right)$
Minimum value at $a=-\frac{24}{2(3)}=-4$
$\left\{\frac{-b}{2 a}\right\}$
Standard 11
Mathematics