જો $K$ એ $( 1 + x + ax^2) ^{10}$ ના વિસ્તરણમાં $x^4$ નો સહગુણક હોય તો $'a'$ ની કઈ કિમત માટે $K$ ન્યૂનતમ થાય?
$4$
$-4$
$-7$
$7$
${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ ના વિસ્તરણમાં ${x^{32}}$ નો સહગુણક મેળવો.
$(1 + x + 2{x^3}){\left( {\frac{3}{2}{x^2} - \frac{1}{{3x}}} \right)^9}$ ના વિસ્તરણમાં અચળપદ મેળવો.
જો ${\left( {x + 1} \right)^n}$ ના વિસ્તરણમાં $x$ ની ઘાતના કોઈ પણ ત્રણ ક્રમિક પદોનો ગુણોત્તર $2 : 15 : 70$ હોય તો ત્રણેય પદોના સહગુણોકની સરેરાસ મેળવો.
જો $\left(a x-\frac{1}{b x^2}\right)^{13}$ માં $x^7$ નો સહગુણક અને $\left(a x+\frac{1}{b x^2}\right)^{13}$ માં $x^{-5}$ નો સહગુણક સરખા હોય,તો $a^4 b^4=.........$
જો ${\left( {{x^2} + \frac{k}{x}} \right)^5}$ ના વિસ્તરણમાં $x$ નો સહગુણક $270$ હોય , તો $k =$