Let $f(x) = sinx + 2sin^2x + 3sin^3x + 4sin^4x+....\infty $ , then number of solution $(s)$ of equation $f(x) = 2$ in $x \in \left[ { - \pi ,\pi } \right] - \left\{ { \pm \frac{\pi }{2}} \right\}$ is

  • A

    $0$

  • B

    $2$

  • C

    $4$

  • D

    $8$

Similar Questions

If $2{\cos ^2}x + 3\sin x - 3 = 0,\,\,0 \le x \le {180^o}$, then $x =$

$\sin 6\theta + \sin 4\theta + \sin 2\theta = 0,$ then $\theta = $

Statement $-1:$ The number of common solutions of the trigonometric equations $2\,sin^2\,\theta - cos\,2\theta  = 0$ and $2 \,cos^2\,\theta - 3\,sin\,\theta  = 0$ in the interval $[0, 2\pi ]$ is two.

Statement $-2:$ The number of solutions of the equation, $2\,cos^2\,\theta  - 3\,sin\,\theta  = 0$ in the interval $[0, \pi ]$ is two.

  • [JEE MAIN 2013]

If $3({\sec ^2}\theta + {\tan ^2}\theta ) = 5$, then the general value of $\theta $ is

If $sin\, \theta = sin\, \alpha$ then $sin\, \frac{\theta }{3}$ =