- Home
- Standard 11
- Mathematics
Trigonometrical Equations
hard
The number of integral values of $k$, for which the equation $7\cos x + 5\sin x = 2k + 1$ has a solution, is
A
$4$
B
$8$
C
$10$
D
$12$
(IIT-2002)
Solution
(b) $ – \sqrt {{7^2} + {5^2}} \le (7\cos x + 5\sin x) \le \sqrt {{7^2} + {5^2}} $
So, for solution $ – \sqrt {74} \le (2k + 1) \le \sqrt {74} $
or $ – 8.6 \le (2k + 1) \le 8.6$ or $ – 9.6 \le 2k \le 7.6$
or $ – 4.8 \le k \le 3.8.$ So, integral values of k are $ – 4,\, – 3,\, – 2,\, – 1,\,0,\,1,\,2,\,3$ $(eight\, values).$
Standard 11
Mathematics