Let a relation $R$ on $\mathbb{N} \times \mathbb{N}$ be defined as : $\left(\mathrm{x}_1, \mathrm{y}_1\right) \mathrm{R}\left(\mathrm{x}_2, \mathrm{y}_2\right)$ if and only if $\mathrm{x}_1 \leq \mathrm{x}_2$ or $\mathrm{y}_1 \leq \mathrm{y}_2$

Consider the two statements :

($I$) $\mathrm{R}$ is reflexive but not symmetric.

($II$) $\mathrm{R}$ is transitive

Then which one of the following is true?

  • [JEE MAIN 2024]
  • A

    Only ($II$) is correct.

  • B

     Only ($I$) is correct.

  • C

    Both ($I$) and ($II$) are correct.

  • D

    Neither ($I$) nor ($II$) is correct.

Similar Questions

Let $N$ be the set of natural numbers greater than $100. $ Define the relation $R$ by : $R = \{(x,y) \in \,N × N :$ the numbers $x$ and $y$ have atleast two common divisors$\}.$ Then $R$ is-

Let $\mathrm{A}=\{1,2,3,4,5\}$. Let $\mathrm{R}$ be a relation on $\mathrm{A}$ defined by $x R y$ if and only if $4 x \leq 5 y$. Let $m$ be the number of elements in $\mathrm{R}$ and $\mathrm{n}$ be the minimum number of elements from $\mathrm{A} \times \mathrm{A}$ that are required to be added to $\mathrm{R}$ to make it a symmetric relation. Then $m+n$ is equal to:

  • [JEE MAIN 2024]

Let $A = \{1, 2, 3\}, B = \{1, 3, 5\}$. If relation $R$ from $A$ to $B$ is given by $R =\{(1, 3), (2, 5), (3, 3)\}$. Then ${R^{ - 1}}$ is

Determine whether each of the following relations are reflexive, symmetric and transitive :

Relation $\mathrm{R}$ in the set $\mathrm{A}=\{1,2,3, \ldots, 13,14\}$ defined as $\mathrm{R}=\{(x, y): 3 x-y=0\}$

Let $L$ be the set of all lines in $XY$ plane and $R$ be the relation in $L$ defined as $R =\{\left( L _{1}, L _{2}\right): L _{1} $ is parallel to $L _{2}\} .$ Show that $R$ is an equivalence relation. Find the set of all lines related to the line $y=2 x+4$