1.Relation and Function
medium

Let a relation $R$ on $\mathbb{N} \times \mathbb{N}$ be defined as : $\left(\mathrm{x}_1, \mathrm{y}_1\right) \mathrm{R}\left(\mathrm{x}_2, \mathrm{y}_2\right)$ if and only if $\mathrm{x}_1 \leq \mathrm{x}_2$ or $\mathrm{y}_1 \leq \mathrm{y}_2$

Consider the two statements :

($I$) $\mathrm{R}$ is reflexive but not symmetric.

($II$) $\mathrm{R}$ is transitive

Then which one of the following is true?

A

Only ($II$) is correct.

B

 Only ($I$) is correct.

C

Both ($I$) and ($II$) are correct.

D

Neither ($I$) nor ($II$) is correct.

(JEE MAIN-2024)

Solution

All $\left(\left(\mathrm{x}_1 \mathrm{y}_1\right),\left(\mathrm{x}_1, \mathrm{y}_1\right)\right)$ are in $\mathrm{R}$ where

$\mathrm{x}_1, \mathrm{y}_1 \in \mathrm{N} \therefore \mathrm{R}$ is reflexive

$((1,1),(2,3)) \in \mathrm{R}$ but $((2,3),(1,1)) \notin \mathrm{R}$

$\therefore \mathrm{R}$ is not symmetric

$((2,4),(3,3)) \in \mathrm{R}$ and $((3,3),(1,3)) \in \mathrm{R}$ but $((2,4)$,

$(1,3)) \notin \mathrm{R}$

$\therefore \mathrm{R}$ is not transitive

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.