1.Relation and Function
normal

જો f : $R \to R$ માટે $f\left( x \right) = \ln \left( {x + \sqrt {{x^2} + 1} } \right)$ હોય તો $\left| {{f^{ - 1}}\left( x \right)} \right| = {e^{ - \left| x \right|}}$ ના ઉકેલો મેળવો.

A

$1$

B

$2$

C

$3$

D

અનંત

Solution

$f(x)=y=\ln (x+\sqrt{x^{2}+1})$

$\Rightarrow \mathrm{e}^{y}=\sqrt{\mathrm{x}^{2}+1}+\mathrm{x} ; \mathrm{e}^{-\mathrm{y}}=\sqrt{\mathrm{x}^{2}+1}-\mathrm{x}$

$f^{-1}(x)=\frac{e^{x}-e^{-x}}{2}$

No. of solutions $=2$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.