Let the angle between two nonzero vectors $\overrightarrow A $ and $\overrightarrow B $ be $120^°$ and resultant be $\overrightarrow C $

  • A

    $\overrightarrow C $ must be equal to $|\overrightarrow A - \overrightarrow B |$

  • B

    $\overrightarrow C $ must be greater than $|\overrightarrow A - \overrightarrow B |$

  • C

    $\overrightarrow C $ must be less than $|\overrightarrow A - \overrightarrow B |$

  • D

    $\overrightarrow C $ may be equal to $|\overrightarrow A - \overrightarrow B |$

Similar Questions

Two forces, each of magnitude $F$ have a resultant of the same magnitude $F$. The angle between the two forces is....... $^o$

Which of the following forces cannot be a resultant of $5\, N$ and $7\, N$ force...........$N$

Given that $\overrightarrow A + \overrightarrow B = \overrightarrow C $and that $\overrightarrow C $ is $ \bot $ to $\overrightarrow A $. Further if $|\overrightarrow A |\, = \,|\overrightarrow C |,$then what is the angle between $\overrightarrow A $ and $\overrightarrow B $

The resultant of two forces, one double the other in magnitude, is perpendicular to the smaller of the two forces. The angle between the two forces is ........ $^o$

The vectors $\vec{A}$ and $\vec{B}$ are such that

$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$

The angle between the two vectors is

  • [AIPMT 2006]