Let the angle between two nonzero vectors $\overrightarrow A $ and $\overrightarrow B $ be $120^°$ and resultant be $\overrightarrow C $

  • A

    $\overrightarrow C $ must be equal to $|\overrightarrow A - \overrightarrow B |$

  • B

    $\overrightarrow C $ must be greater than $|\overrightarrow A - \overrightarrow B |$

  • C

    $\overrightarrow C $ must be less than $|\overrightarrow A - \overrightarrow B |$

  • D

    $\overrightarrow C $ may be equal to $|\overrightarrow A - \overrightarrow B |$

Similar Questions

The sum of two forces acting at a point is $16\, N.$ If the resultant force is $8\, N$ and its direction is perpendicular to minimum force then the forces are

Two vectors $\overrightarrow A $and $\overrightarrow B $lie in a plane, another vector $\overrightarrow C $lies outside this plane, then the resultant of these three vectors i.e.,$\overrightarrow A + \overrightarrow B + \overrightarrow C $

What vector must be added to the two vectors $\hat i - 2\hat j + 2\hat k$ and $2\hat i + \hat j - \hat k,$ so that the resultant may be a unit vector along $X-$axis

Explain subtraction of vectors.

The magnitude of vector $\overrightarrow A ,\,\overrightarrow B $ and $\overrightarrow C $ are respectively $12, 5$ and $13$ units and $\overrightarrow A + \overrightarrow B = \overrightarrow C $ then the angle between $\overrightarrow A $ and $\overrightarrow B $ is