Let the angle between two nonzero vectors $\overrightarrow A $ and $\overrightarrow B $ be $120^°$ and resultant be $\overrightarrow C $

  • A

    $\overrightarrow C $ must be equal to $|\overrightarrow A - \overrightarrow B |$

  • B

    $\overrightarrow C $ must be greater than $|\overrightarrow A - \overrightarrow B |$

  • C

    $\overrightarrow C $ must be less than $|\overrightarrow A - \overrightarrow B |$

  • D

    $\overrightarrow C $ may be equal to $|\overrightarrow A - \overrightarrow B |$

Similar Questions

The vectors $\vec{A}$ and $\vec{B}$ are such that

$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$

The angle between the two vectors is

  • [AIIMS 2016]

Two vectors having equal magnitudes $A$ make an angle $\theta$ with each other. The magnitude and direction of the resultant are respectively

The resultant of these forces $\overrightarrow{O P}, \overrightarrow{O Q}, \overrightarrow{O R}, \overrightarrow{O S}$ and $\overrightarrow{{OT}}$ is approximately $\ldots \ldots {N}$.

[Take $\sqrt{3}=1.7, \sqrt{2}=1.4$ Given $\hat{{i}}$ and $\hat{{j}}$ unit vectors along ${x}, {y}$ axis $]$

  • [JEE MAIN 2021]

A particle is situated at the origin of a coordinate system. The following forces begin to act on the particle simultaneously (Assuming particle is initially at rest)

${\vec F_1} = 5\hat i - 5\hat j + 5\hat k$            ${\vec F_2} = 2\hat i + 8\hat j + 6\hat k$

${\vec F_3} =  - 6\hat i + 4\hat j - 7\hat k$         ${\vec F_4} =  - \hat i - 3\hat j - 2\hat k$

Then the particle will move

If $\vec A$ and $\vec B$ are two non-zero vectors such that $\left| {\vec A + \vec B} \right| = \frac{{\left| {\vec A - \vec B} \right|}}{2}$ and $\left| {\vec A} \right| = 2\left| {\vec B} \right|$ then the angle between $\vec A$ and $\vec B$ is