माना दो अशून्य सदिशों $\mathop A\limits^ \to $ व $\mathop B\limits^ \to $ के बीच कोण $120^°$ है तथा इनका परिणामी $\mathop C\limits^ \to $ है तो
$\mathop C\limits^ \to $ अवश्य ही $|\mathop A\limits^ \to - \mathop B\limits^ \to |$ के बराबर होगा
$\mathop C\limits^ \to $ अवश्य ही $|\mathop A\limits^ \to - \mathop B\limits^ \to |$ से अधिक होगा
$\mathop C\limits^ \to $ अवश्य ही $|\mathop A\limits^ \to - \mathop B\limits^ \to |$ से कम होगा
$\mathop C\limits^ \to $, $|\mathop A\limits^ \to - \mathop B\limits^ \to |$ के बराबर हो सकता है
सदिश $\overrightarrow{ A }$ और $\overrightarrow{ B } .$ इस प्रकार हैं कि $|\overrightarrow{ A }+\overrightarrow{ B }|=|\overrightarrow{ A }-\overrightarrow{ B }|$ इन दो सदिशों के बीच का कोण है
कथन $I$ - दो बल $(\overrightarrow{ P }+\overrightarrow{ Q })$ तथा $(\overrightarrow{ P }-\overrightarrow{ Q })$ जहाँ $\overrightarrow{ P } \perp \overrightarrow{ Q }$, जब एक दूसरे से $\theta_{1}$ कोण पर लगते हैं, तो परिणामी का परिमाण $\sqrt{3\left( P ^{2}+ Q ^{2}\right)}$ होता है तथा जब $\theta_{2}$ कोण पर लगते है, तो परिणामी का परिमाण $\sqrt{2\left( P ^{2}+ Q ^{2}\right)}$ होता है। यह तभी सम्भव होता है जब $\theta_{1}<\theta_{2}$ है।
कथन $II$ - उपयुर्क्त दी गयी दशा में $\theta_{1}=60^{\circ}$ तथा $\theta_{2}=90^{\circ}$ उपर्युक्त कथनों के अवलोकन में, नीचे दिए गये विकल्पों से उपयुक्त उत्तर चुनिए।
सूची$- I$ और सूची$- II$ का मिलान कीजिए।
निचे दिए गए विकल्प में से सही उत्तर चुनिए।
दो सदिशों $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के मध्य कोण $\theta $ हो तो इनके योग का मान होगा
समान परिमाण $\mathrm{R}$ के दो सदिशों $\overrightarrow{\mathrm{A}}$ व $\overrightarrow{\mathrm{B}}$ के बीच का कोण $\theta$ है तब