The magnitude of vectors $\overrightarrow{ OA }, \overrightarrow{ OB }$ and $\overrightarrow{ OC }$ in the given figure are equal. The direction of $\overrightarrow{ OA }+\overrightarrow{ OB }-\overrightarrow{ OC }$ with $x$-axis will be
$\tan ^{-1} \frac{(1-\sqrt{3}-\sqrt{2})}{(1+\sqrt{3}+\sqrt{2})}$
$\tan ^{-1} \frac{(\sqrt{3}-1+\sqrt{2})}{(1+\sqrt{3}-\sqrt{2})}$
$\tan ^{-1} \frac{(\sqrt{3}-1+\sqrt{2})}{(1-\sqrt{3}+\sqrt{2})}$
$\tan ^{-1} \frac{(1+\sqrt{3}-\sqrt{2})}{(1-\sqrt{3}-\sqrt{2})}$
Two forces are such that the sum of their magnitudes is $18\; N$ and their resultant is $12\; N$ which is perpendicular to the smaller force. Then the magnitudes of the forces are
Two forces of magnitude $8 \,N$ and $15 \,N$ respectively act at a point. If the resultant force is $17 \,N$, the angle between the forces has to be .......
A hall has the dimensions $10\,m \times 12\,m \times 14\,m.$A fly starting at one corner ends up at a diametrically opposite corner. What is the magnitude of its displacement...........$m$
While travelling from one station to another, a car travels $75 \,km$ North, $60\, km$ North-east and $20 \,km $ East. The minimum distance between the two stations is.......$km$