माना समीकरण $x ^{2}+ y ^{2}+ px +(1- p ) y +5=0$ उन वर्तों को दर्शाती है, जिनकी चर त्रिज्या $I \in(0,5]$ है। तो समुच्चय $S =\left\{ q : q = p ^{2}\right.$ तथा $q$ एक पूर्णाक है $\}$ में अवयवों की संख्या है ......... |
$60$
$61$
$62$
$63$
वृत्तों ${x^2} + {y^2} + 13x - 3y = 0$ तथा $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ के प्रतिच्छेद बिन्दु से होकर जाने वाले वृत्त का समीकरण, जिसका केन्द्र $13x + 30y = 0$ पर स्थित है, होगा
$k$ का वह मान जिसके लिये वृत्त ${x^2} + {y^2} + kx + 4y + 2 = 0$ व $2({x^2} + {y^2}) - 4x - 3y + k = 0$ लम्बवत् प्रतिच्छेदित करते हैं, है
$a , b , c ( a < b < c )$ त्रिज्याओं वाले तीन वृत्त परस्पर बाह्य स्पर्श करते हैं। यदि $x$ -अक्ष उनकी एक उभयनिष्ठ स्पर्श रेखा है, तो :
एक वृत्त ${x^2} + {y^2} + 2gx + c = 0$ के समाक्षीय निकाय में, जहाँ $g$ एक प्राचल है, यदि $c > 0$, तब वृत्त हैं
वत्त, $x ^{2}+ y ^{2}-2 x -6 y +6=0$ का कोई एक व्यास, किसी और वत्त ' $C$ ' की एक जीवा है। यदि वत्त ' $C$ ' का केन्द्र $(2,1)$ है, तो इस की त्रिज्या बराबर है