સમીકરણ $x^{2}+y^{2}+p x+(1-p) y+5=0$ એ વર્તુળ દર્શાવે છે કે જેની ચલિત ત્રીજ્યા $\mathrm{r} \in(0,5]$ છે તો ગણ $S=\left\{q: q=p^{2}\right.$ અને $\mathrm{q}$ એ પૂર્ણાંક છે. $\}$ ની સભ્ય સંખ્યા મેળવો.
$60$
$61$
$62$
$63$
જો રેખા $y = x + 3$ એ વર્તૂળ $x^2 + y^2 = a^2$ ને બે બિંદુઓ $A$ અને $B$ માં છેદે તો $AB$ વ્યાસ હોય તેવા વર્તૂળનું સમીકરણ . . . . . .
વર્તુળો ${x^2} + {y^2} - 2x - 4y = 0$ અને ${x^2} + {y^2} - 8y - 4 = 0$ એ. . . .
જો બે વર્તૂળો $ (x - 1)^2 + (y - 3)^2 = r^2 $ અને $x^2 + y^2 - 8x + 2y + 8 = 0$ બે ભિન્ન બિંદુઓમાં છેદે, તો.....
જો ચલિત રેખા $3x + 4y -\lambda = 0$ એવી મળે કે જેથી બે વર્તુળો $x^2 + y^2 -2x -2y + 1 = 0$ અને $x^2 + y^2 -18x -2y + 78 = 0$ એ વિરુધ્ધ બાજુએ રહે તો $\lambda $ ની શક્ય કિમતો .............. અંતરાલમાં મળે
બિંદુઓ $(0,0),(1,0)$ માંથી પસાર થતા અને વર્તુળ $x^2+y^2=9$ ને સ્પર્શતા એક વર્તુળનું કેન્દ્ર $(h, k)$ છે. તો કેન્દ્ર $(h, k)$ ના યામોની તમામ શક્ય કિંમતો માટે $4\left(\mathrm{~h}^2+\mathrm{k}^2\right)=$ ..........