બે ઉપવલયો ${E_1}:\,\frac{{{x^2}}}{3} + \frac{{{y^2}}}{2} = 1$ અને ${E_2}:\,\frac{{{x^2}}}{16} + \frac{{{y^2}}}{b^2} = 1$ છે જો તેમની ઉત્કેન્દ્રતાનો ગુણાકાર $\frac {1}{2}$ થાય તો ઉપવલય $E_2$ ની ગૌણઅક્ષની લંબાઈ મેળવો.
$8$
$9$
$4$
$2$
એક ઉપવલય પરનું બિંદુ $(4, -1)$ ને રેખા $x + 4y - 10 = 0$ સ્પર્શેં છે જો તેની અક્ષો યામાક્ષો સાથે સાંપતી હોય, તો તેનું સમીકરણ $(a > b)$
સમીકરણ $ \frac{{{x^2}}}{{10\,\, - \,\,a}}\,\, + \,\,\frac{{{y^2}}}{{4\,\, - \,\,a}}\,\, = \,\,1\,$ એ ઉપવલય છે તેમ ક્યારે દર્શાવે:
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ $b=3,\,\, c=4,$ કેન્દ્ર ઊગમબિંદુ તથા નાભિઓ $x-$ અક્ષ પર હોય.
જે વકો $\frac{x^{2}}{a}+\frac{y^{2}}{b}$ અને $\frac{x^{2}}{c}+\frac{y^{2}}{d}=1$ એકબીજને $90^{\circ}$ નાં ખૂણે છેદતા હોય, તો નીચેનામાંથી કયો સંબંધ સત્ય છે ?
જો વક્રો $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ અને $x^{2}+y^{2}=12$ ના સામાન્ય સ્પર્શકની ઢાળ $m$ હોય, તો $12\,m^{2}=\dots\dots\dots$