Let the latus rectum of the hyperbola $\frac{x^2}{9}-\frac{y^2}{b^2}=1$ subtend an angle of $\frac{\pi}{3}$ at the centre of the hyperbola. If $\mathrm{b}^2$ is equal to $\frac{l}{\mathrm{~m}}(1+\sqrt{\mathrm{n}})$, where $l$ and $\mathrm{m}$ are co-prime numbers, then $l^2+\mathrm{m}^2+\mathrm{n}^2$ is equal to______________.

  • [JEE MAIN 2024]
  • A

    $177$

  • B

    $56$

  • C

    $182$

  • D

    $728$

Similar Questions

Point from which two distinct tangents can be drawn on two different branches of the hyperbola $\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{16}} = \,1$ but no two different tangent can be drawn to the circle $x^2 + y^2 = 36$ is

Let the eccentricity of the hyperbola $H : \frac{ x ^{2}}{ a ^{2}}-\frac{ y ^{2}}{ b ^{2}}=1$ be $\sqrt{\frac{5}{2}}$ and length of its latus rectum be $6 \sqrt{2}$, If $y =2 x + c$ is a tangent to the hyperbola $H$, then the value of $c ^{2}$ is equal to

  • [JEE MAIN 2022]

The graph of the conic $ x^2 - (y - 1)^2 = 1$  has one tangent line with positive slope that passes through the origin. the point of tangency being $(a, b). $ Then  Length of the latus rectum of the conic is

The point $\mathrm{P}(-2 \sqrt{6}, \sqrt{3})$ lies on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ having eccentricity $\frac{\sqrt{5}}{2} .$ If the tangent and normal at $\mathrm{P}$ to the hyperbola intersect its conjugate axis at the point $\mathrm{Q}$ and $\mathrm{R}$ respectively, then $QR$ is equal to :

  • [JEE MAIN 2021]

The foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ coincide. Then the value of $b^2$ is -