10-2. Parabola, Ellipse, Hyperbola
hard

Let the latus rectum of the hyperbola $\frac{x^2}{9}-\frac{y^2}{b^2}=1$ subtend an angle of $\frac{\pi}{3}$ at the centre of the hyperbola. If $\mathrm{b}^2$ is equal to $\frac{l}{\mathrm{~m}}(1+\sqrt{\mathrm{n}})$, where $l$ and $\mathrm{m}$ are co-prime numbers, then $l^2+\mathrm{m}^2+\mathrm{n}^2$ is equal to______________.

A

$177$

B

$56$

C

$182$

D

$728$

(JEE MAIN-2024)

Solution

$ LR$ subtends $60^{\circ}$ at centre

$ \Rightarrow \tan 30^{\circ}=\frac{b^2 / a}{a e}=\frac{b^2}{a^2 e}=\frac{1}{\sqrt{3}} $

$ \Rightarrow \mathrm{e}=\frac{\sqrt{3}^2}{9}$

Also, $e^2=1+\frac{b^2}{9} \Rightarrow 1+\frac{b^2}{9}=\frac{3 b^4}{81}$

$ \Rightarrow b^4=3 b^2+27 $

$ \Rightarrow b^4-3 b^2-27=0$

$ \Rightarrow b^2=\frac{3}{2}(1+\sqrt{13})$

$ \Rightarrow \ell=3, m=2, n=13 $

$ \Rightarrow \ell^2+m^2+n^2=182$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.